GNNs based on **local features** capture a logic heavily used in **Knowledge Representation**.

GNNs mixing **local + global** features can express First Order logic **with 2 variables and counting**.

Logical Expressiveness of Graph Neural Networks

Instituto Milenio

de los datos

Fundamentos

Aggregate-Combine GNNs (AC-GNNs)

ALCQ: a Description Logic to define concepts

Example: The following is an ALCQ formula

Man \sqcap married.Doctor $\sqcap \exists^{\geq 3}$ child.Happy

defining "men married with a doctor that have at least three happy children".

Theorem 1

A formula is captured by an **AC-GNN** if and only if it is expressible in **ALCQ**

First Order logic with counting (FOC)

Example: A node *v* satisfies the *FOC* formula

$$\operatorname{Red}(x) \land \exists y \left(\neg E(x,y) \land \exists^{\geq 2} x \left[E(y,x) \land \operatorname{Blue}(x) \right] \right)$$

If and only if:
 \mathbf{v} is red, and there is a node not connected with \mathbf{v}
that has at least two blue neighbors

FOC-k: FOC with only k variables in every formula.

ACR-GNNs: adding global features (Readouts) $\boldsymbol{x}_{v}^{(i)} = \text{COM}^{(i)} \left(\boldsymbol{x}_{v}^{(i-1)}, \text{AGG}^{(i)} \left(\left\{ \left\{ \boldsymbol{x}_{u}^{(i-1)} \mid u \in \mathcal{N}_{G}(v) \right\} \right\} \right), \\ \text{READ}^{(i)} \left(\left\{ \left\{ \boldsymbol{x}_{u}^{(i-1)} \mid u \in G \right\} \right\} \right) \right) \\ \text{considers the features of all} \\ \text{nodes in the graph}$

Theorem 2

UNIVERSITY OF

OXFORD

Every formula expressible in *FOC2* can be captured by an *ACR-GNN*

AC-GNNs cannot always implement *FOC-2* formulas

50

CIENCIAS DE LA COMPUTACIÓN

JNIVERSIDAD DE CHILE

Results on synthetic data and FOC-2 formulas

Proposition

PONTIFICIA

CATÓLICA

DE CHILE

UNIVERSIDAD

There are (infinite) **FOC-2** formulas that cannot be captured by **AC-GNNs**

	α_1 Train	α_1 Test		α_2 Train	α_2 Test	
		same-size	bigger		same-size	bigger
AC 10-layers	0.839	0.826	0.671	0.694	0.695	0.667
GIN 10-layers	0.567	0.566	0.536	0.689	0.693	0.672
ACR 1-layer	$1.000 \\ 1.000 \\ 1.000$	1.000	1.000	0.827	0.834	0.726
ACR 2-layers		1.000	1.000	0.895	0.897	0.770
ACR 3-layers		1.000	1.000	0.903	0.902	0.836

Pablo BarcelóEgor V. KostylevMikaël Monet**Oxford**Juan L. ReutterJorge PérezJUC & IMFDJorge PérezJuan-Pablo Silva

UChile & IMFD

Contact: <ipperez@dcc.uchile.cl>